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The initial stages of the evolution of an open quantum system encode the key information of its
underlying dynamical correlations, which in turn can predict the trajectory at later stages. We propose a
general approach based on non-Markovian dynamical maps to extract this information from the initial
trajectories and compress it into non-Markovian transfer tensors. Assuming time-translational invariance,
the tensors can be used to accurately and efficiently propagate the state of the system to arbitrarily long time
scales. The non-Markovian transfer tensor method (TTM) demonstrates the coherent-to-incoherent
transition as a function of the strength of quantum dissipation and predicts the noncanonical equilibrium
distribution due to the system-bath entanglement. TTM is equivalent to solving the Nakajima-Zwanzig
equation and, therefore, can be used to reconstruct the dynamical operators (the system Hamiltonian and
memory kernel) from quantum trajectories obtained in simulations or experiments. The concept underlying
the approach can be generalized to physical observables with the goal of learning and manipulating the
trajectories of an open quantum system.
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Introduction.—The dynamics of large open quantum
systems are of interest to a broad range of disciplines,
including condensed-matter physics, ultrafast spectros-
copy, and quantum information technology, just to name
a few. Of particular interest is the interaction between
the system under study and the environment to which it
couples. Within the fast bath approximation, the evolution
of the system’s density matrix is dictated by a Lindbladian
superoperator and can be regarded as a linear Markovian
process. Nevertheless, in general the quantum trajectory of
the open system is entangled with the bath and is, therefore,
temporally correlated, i.e., non-Markovian. The analysis
and simulation of this correlation is a daunting task, which
often requires resources that scale exponentially with the
system size. The root of the problem is the lack of a
compact but complete representation of the information
encoded in open quantum trajectories. The standard
approaches fall into two classes: quantum master equations
and path integral simulations. The first class of approaches
is based on formally exact equations of motion, such as the
Nakajima-Zwanzig formalism [1–3] or others, but restricted
to either weak damping, high-temperature, short memory
time or short simulation time [4–10]. The second class of
approaches adopts the harmonic bath assumption that
renders the use of stochastic Gaussian sampling or influence
functional possible [11,12] but does not converge well
with the system size, the length of the memory time, or
thestrengthof thedissipation.Toovercome thesedifficulties,
weneeda radicallydifferent approach todissipativequantum
dynamics.
In this Letter, we propose a unified method to character-

ize, reconstruct, and propagate quantum trajectories that are
nonlocally correlated in time. It applies to any form of the

system-bath Hamiltonian and scales favorably with respect
to the system size and length of the time correlation. The
scheme is based on a black-box analysis that extracts all
available information from samples of initial trajectories
generated experimentally or numerically. This information
is stored in a collection of non-Markovian dynamical maps,
which describes the propagation of the initial state of the
system to a later time with full account for the time
correlations in the trajectories. Then, a transformation of
these maps is performed to obtain a set of transfer tensors
that sort out correlations over different times. These tensors
are the central object of this Letter and serve two purposes:
On the one hand, under the assumption of time-translational
invariance, the tensor formalism can be used in a multipli-
cative fashion to propagate the state of the system to
arbitrarily long times, leading to a nonperturbative and
efficient algorithm for simulating dissipative quantum sys-
tems. On the other hand, the tensor multiplication method
can be identified as the formal solution to the Nakajima-
Zwanzig equation, such that one can reconstruct the system
Hamiltonian and the memory kernel from the tensors and,
therefore, design a procedure for non-Markovian quantum
process tomography.
Extraction of non-Markovian dynamical maps.—The

concept of dynamical maps [13] has been extensively
explored as it contains all possible information on a
quantum dynamical system [14–16]. It is known from
studies in quantum process tomography [17–19] that it is
possible to obtain the dynamical map by adopting the
concept of black-box engineering. The standard approach
is to initialize the dynamics with a complete basis set of
the Hilbert space and then perform an input-output analysis
of the propagation. Here, we apply this approach to
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non-Markovian open quantum trajectories to generate the
dynamical maps at the discretized times tk ¼ kδt, where δt
is the time step of the simulation or the time resolution of
the experiment,

ρðtkÞ ¼ Ekρð0Þ: (1)

The initial condition of the map is the identity operator
E0 ¼ I. Below, we show that by decoding the information
contained in the finite set of dynamical maps fEkg one
can develop an efficient method to learn, propagate, and
reconstruct the dynamics of an open quantum system.
Propagation via tensor multiplication.—Among differ-

ent possible definitions [15,16], in this Letter we identify
non-Markovianity with violation of the semigroup prop-
erty. If the evolution is Markovian, it is possible to use the
same map to propagate over longer times in a multiplicative
fashion, i.e., En ¼ En

1 . Examples include conserved quan-
tum dynamics and time-local dissipative master equations
(i.e., those of Lindblad form [20]). In a non-Markovian
process, each dynamical map needs to be found independ-
ently, which constitutes a highly inefficient task since it
contains correlations of the state of the system at the present
time with the states at all the previous time steps. Here,
we transform the set of dynamical maps into a set of
transfer tensors T such that, regardless of the degree of
Markovianity of the environment, one can always propa-
gate the system in a multiplicative fashion. For this, we
propose the following transformation

Tn;0 ¼ En −
Xn−1
m¼1

Tn;mEm; (2)

which reduces to the Markovian limit if all T vanish
except for the tensors corresponding to a single time step
Tnþ1;n. Illustrated in Fig. 1, this expression establishes the

relationship between the maps En and the tensors Tn;m and
allows us to transform the dynamical mapping defined in
Eq. (1) into a dynamical propagation,

ρðtnÞ ¼
Xn−1
k¼0

Tn;kρðtkÞ: (3)

In a sense, we regard the non-Markovian effect as time
correlations in the quantum trajectory and encode the
correlation between any pair of time slices tk < tn in the
tensor Tn;k so that Tn;kρðtkÞ corresponds to the component
of ρðtnÞ that is conditioned on ρðtkÞ. As in Eq. (1), the
summation over all the possible components determines
the density matrix at time tn.
The formulation presented above is general and will now

be simplified by assuming time-translational invariance and
finite time correlation in the transfer tensor. Under certain
assumptions, e.g., separable system-bath initial conditions
and a time-independent Hamiltonian, we may invoke time-
translational invariance so that the transfer tensor is a function
of the time difference only,Tn;k ¼ Tn−k. This selects a unique
time frame in the dynamics, related for instance to the initial
pulse in ultrafast laser excitation. We note that the time-
translational property applies in general only to the transfer
tensor, whereas for the dynamical map it holds only under
Markovian or unitary dynamics. The tensors may now be
obtained from the set of dynamical maps in an iterative
fashion. E1 corresponds to theMarkovian part of the dynami-
cal map, generated by the system Hamiltonian and the initial
relaxation due to the system-bath interaction, and we define
T1 ≡ E1. The second map E2 contains the effect of two
sequential Markovian steps E2

1. Any deviation of E2 from E2
1

arises from thememory effect of the non-Markovian bath and
is encapsulated in the transfer tensor T2 ≡ E2 − E1E1 ¼
E2 − T1E1. Similarly, E3 contains the correlation between
t0 and t3, and T3 ≡ E3 − T1E2 − T2E1. Following this
procedure, one can iteratively extract past-present correlations
fromdynamicalmaps. Since the timespanofbath correlations
in realistic systems is finite,onemaydefineacutoffK suchthat
Ts → 0 for s > K. In practice, one would define an accuracy
threshold ϵ for some measure of the magnitude of the tensor
(for instance, the trace norm). One would define the cutoff as
the point where that measure falls below the threshold. This
justifies the truncation of the sum in Eq. (3) at k ¼ K.
Therefore, the dynamics of a large class of quantum systems
may be encoded in the finite set of transfer tensors Ts with
s ∈ f1;…; Kg, and the matrix propagation Eq. (3) for times
tn > tK can be regarded as a tensor multiplication method,

ρðtmÞ ¼ ðT1T2…TK Þ

0
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ρðtm−2Þ

..

.
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1
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FIG. 1 (color online). Diagram of the relationship between
the dynamical maps Ek and the transfer tensors Tk;r. While the
dynamical map propagates any initial condition to a later time tk,
the transfer tensor Tk;r quantifies the direct correlation of the state
of the system at time tk and the state at time tr.
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which is the non-Markovian extension of time-local dissipa-
tivequantumdynamics anddefinesour transfer tensormethod
(TTM) for propagation.
The TTM equation completes the basic four-steps

scheme: generate short-time trajectories numerically or
experimentally, learn from short-time trajectories to extract
the dynamical maps in Eq. (1), use Eq. (2) to derive the
transfer tensors from the map, and evolve the density matrix
to arbitrarily long time according to Eq. (3). This procedure
is completely general and applies to any system or bath,
continuous or discrete. Yet, for simplicity of the bench-
marking, we will use the numerical example of the spin-
boson model below.
Scaling and error estimation.—With TTM, we hope to

address a challenge faced by many numerically exact
simulation methods of open quantum systems: one can
typically recognize an unfavorable exponential scaling of
resources with the number of simulated time steps. In the
case of stochastic or Monte Carlo methods, an exponen-
tially larger sample size is required for longer simulations.
Renormalization methods [6–8] require an ever increasing
representation of the bath as time increases. The hierarchy
of equations of motion [4] is limited to the Drude-Lorentz
bath and is characterized by a factorial scaling with the
increase of the hierarchy levels. In the case of QUAPI [12]
or any other deterministic approach based on a path integral
formulation, each path requires explicit storage and the
tensor scales exponentially like D2ðKþ1Þ for a Hilbert space
of dimension D and a truncation K on the memory kernel.
The TEDOPA [21] method has a more favorable scaling,
but the size of its representation increases with temperature
and time. In all the cases mentioned, this time-dependent
scaling is usually in addition to the one depending on the
system size. A remarkable aspect of the tensor multiplica-
tion method is the linear scaling of the storage require-
ments, since the total size of the set of transfer tensors is
KD4. Thus, by combining our method with an exact
simulation one manages to reduce the required resources
for long-time simulation by a significant amount. On the
basis of this, our method is especially suitable for large
systems, strong damping, and long memory time. Another
useful aspect of the scheme is the direct relationship
between the magnitude of the elements of the last tensor
and the accuracy of the propagation. Despite being system
specific, a reasonable upper bound for the error e associated
with the truncation at level K is represented by some norm
measure of the first neglected correlation operator, i.e.
e≃ jTKþ1j. This error accumulates in a multiplicative
fashion. Since K can be arbitrarily chosen, the error of
the long time prediction can be reduced at will. It is
worth noting that this method is deterministic and is,
therefore, not affected by the so-called “sign problem”
of Monte Carlo and stochastic propagation methods.
Examples of propagation.—We now demonstrate the

applicability of the proposed method with two examples.

To begin with, trajectories of a biased two-level system
(TLS) with exponentially decaying noise have been gen-
erated using the hierarchy method [4] and the TTM. The
frequency difference of the TLS is ω0 ¼ 100 cm−1, and
the intrinsic coupling is J ¼ ω0. The TLS couples off
diagonally to a harmonic bath of temperature T ¼ 300 K, a
characteristic frequency of γ ¼ J, and a variety of system-
bath couplings ranging from λ ¼ 0.01J to λ ¼ 2J. As
shown in Fig. 2, after the initial learning period shown
in the insets, TTM successfully reproduces the transient
dynamics of the density matrix until it reaches equilibrium.
The different values of system-bath couplings are chosen
such that the crossover between underdamped to over-
damped dynamics is illustrated: whereas the first panel with
λ ¼ 0.01J contains oscillatory dynamics at short time,
these progressively disappear with increasing λ until no
trace of coherent oscillations can be observed for λ ¼ 2J. It
is worth noting that the composition of the equilibrium state
varies with λ due to quantum noncanonical statistics
[22,23]. This effect is correctly reproduced by our method,
which indicates its suitability to predict long-time dynami-
cal features with high accuracy. As the second example, we
have further explored this effect quantitatively using a
measure of the deviation from the canonical equilibrium
distribution as defined in Ref. [22]: the Bloch sphere
angular distance θ between the canonical distribution
eigenbasis and the noncanonical one. Figure 3 explores
the deviation θ as a function of the system-bath coupling λ

FIG. 2 (color online). Numerically exact simulation with the
hierarchic method (lines) and prediction with TTM (dots) of the
density matrix elements of a two-level system under the influence
of a Drude-Lorentz bath for different values of the system-bath
coupling λ. Blue (solid) lines correspond to ðρ11 − ρ22Þ, green
(dashed) lines to Refρ12g and red (dotted) lines to Imfρ12g. The
inset of every plot shows the corresponding learning period for
the initial condition ρ11ð0Þ ¼ 1. The system-bath parameters are
T ¼ 300 K (kBT ≃ 2ℏJ) and γ ¼ J, with J ¼ 100 cm−1. The
equilibrium state for the case of λ ¼ 0.01J is shown with colored
dots on the axis.
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and the temperature T. The equilibrium entanglement with
the bath increases with the strength of the interaction,
which results in an increasing deviation from the canonical
equilibrium that is specific to quantum systems. For a
strong enough system-bath coupling, the noncanonical
distribution reaches the eigenbasis of the system-bath
interaction operator and the deviation angle saturates. In
the present case, the saturation angle corresponds to π=4
radians. In contrast, thermalization suppresses entangle-
ment, which explains the decrease of deviation from the
canonical equilibrium with increasing temperature. The
equilibrium density matrix returns to the Boltzmann dis-
tribution in the high-temperature limit. It is evident from
these two examples that the TTM is suitable for long-time
simulation of dissipative quantum systems for which
existing methods are not efficient or practical. This opens
up a new possibility for exploring a plethora of previously
unaccessible dynamical regimes.
Extraction of the Nakajima-Zwanzig equation.—A

unique aspect of the TTM approach is the possibility of
using the complete information obtained via the dynamical
maps to generate the equation of motion and the associated
dynamical operators. Earlier, simple methods have been
used to determine the Hamiltonian and the Markovian
decoherence [24]. Here we demonstrate that the non-
Markovian nature of the dynamics, i.e., the memory kernel
and consequently the correlation function of the environ-
ment, can also be rigorously determined. For this reason, it
is useful to relate the non-Markovian dynamical maps to
the physical terms in the exact Nakajima-Zwanzig formal-
ism [1–3], where the evolution of an open quantum system

with separable initial conditions can be expressed exactly in
the form of the equation

ρ
: ðtÞ ¼ −iLsρðtÞ þ

Z
t

0

Kðt; t0Þρðt0Þdt0: (4)

Here, Ls is the Liouvillian of the system alone, and Kðt; t0Þ
is the memory kernel due to the system-bath interaction [1].
This equation can be seen as the continuous limit of Eq. (3).
Thus, by comparing the time-convoluted kernels, we can
easily identify,

Tk;n ¼ ð1 − iLsδtÞδk;nþ1 þKk;nδt2: (5)

Here, Ka;b ¼ Kðta; tbÞ and δa;b is the Kronecker delta. This
identity not only elucidates the physical motivation for
using the transfer tensors Tk instead of the dynamical maps
Ek in the numerical propagation of the density matrix but
also suggests using TTM to evaluate the memory kernel.
Specifically, we extract the dynamical maps from the short-
time dynamics, use Eq. (2) to transform the maps into
tensors, and then identify the tensors with the system
Hamiltonian and memory kernel in Eq. (4).
An example that illustrates this approach is shown in

Fig. 4, where the memory kernel is plotted as a function of
time for the spin-boson model. The numerical results are
extracted from a hierarchy simulation of short-time trajec-
tories under the influence of a Drude-Lorentz bath. As the
benchmark, we compare the simulated memory kernel with
the prediction from path integral calculations using the

FIG. 3 (color online). Deviation θ from the canonical distri-
bution as a function of the system-bath coupling λ, the cutoff
frequency γ, and the temperature T. The learning period spans the
first 25 fs of the dynamics. The coupling is J ¼ 100 cm−1, and
the cutoff frequency is γ ¼ 5J. In the upper panel kbT ¼ 2ℏJ,
and in the lower panel λ ¼ J.

FIG. 4 (color online). Real parts of nonzero elements of the
memory kernel as a function of time. The nonzero elements
are K11→11 ¼ −K11→22, K22→22 ¼ −K22→11, and K12→21 ¼
−K21→21 ¼ −K12→12 ¼ K21→12. The solid lines represent the
matrix elements of the memory kernel extracted by applying
TTM to a hierarchy simulation of a symmetric two-level system
with coupling Ω. The dots are the values corresponding to the
analytical prediction. The dissipative system is characterized by
the parameters λ ¼ 0.25 Ω, γ ¼ 0.05 Ω, and βΩ ¼ 4.79.
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Feynman-Vernon influence functional and find perfect
agreement. The ability to generate the transfer tensors Tk
directly from the influence functional for large-scale
simulations of quantum dissipative systems (up to hundreds
of excitonic states) will be presented elsewhere.
The connection to the memory kernel further specifies

the conditions under which time-translational invariance
can be assumed. If (i) the total Hamiltonian is time
independent, (ii) the initial total state is a product state,
and (iii) the initial state of the environment is a stationary
state, then the memory kernel depends only on the differ-
ence of its arguments, i.e., Kðt; t0Þ ¼ Kðt − t0; 0Þ; see
Sect. 5.1 in Ref. [25], also Refs. [1,5]. These conditions
are, hence, directly related to the time-translational invari-
ance of the transfer tensors.
Conclusion.—We have presented a strategy based on

non-Markovian dynamical maps to process the relevant
information encapsulated in the trajectory of an open
quantum system. This information can be used to learn
about the underlying dynamics of the system in order to
generate a set of transfer tensors for propagation to longer
time scales. Applications of TTM to short-time trajectories
clearly demonstrate the dynamic transition from coherent
oscillations to incoherent transfer and accurately predict
the noncanonical equilibrium distributions. Further, the
transfer tensor method can be used to reconstruct the
relevant dynamical operators of the system such as its
Hamiltonian and memory kernel, by identifying the tensors
with the Nakajima-Zwanzig equation. Because of its
adaptability and scalability, the proposal not only con-
stitutes a pedagogic approach to the description of open
quantum systems but also stands out as a promising
technique to extend the time span of simulating quantum
trajectories.
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