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A B S T R A C T

We consider the open question raised by Chang et al. (2005) to solve the EOQ and EPQ inventory models without
referring to calculus. Lau et al. (2016) and Chiu et al. (2017) both extended this open question by deriving cri-
terion for the existence and uniqueness of the interior minimum solution but they used analytical techniques that
are related to calculus. Moreover, their derivations are incomplete and contained questionable results. In this
note, we only used algebraic approach for their extended open question.
1. Introduction

Since Grubbstr€om and Erdem (1999) used an algebraic approach to
solve the minimum problem of an inventory model, there are nearly two
hundred papers that followed this trend to develop different algebraic
methods to find the optimal solutions for inventory systems. Most papers
concentrated on their own inventory models and did not pay attention to
an open question proposed by Chang et al. (2005), which contains a
quadratic polynomial inside a square root and requires finding the
optimal solution only by algebraic methods without referring to calculus.
Until recently, Lau et al. (2016) reconsidered the open question and
extended to a more general setting. They tried to obtain criterion to
guarantee the existence and uniqueness of the optimal solution for the
minimum problem. Chiu et al. (2017) pointed out the findings of Lau
et al. (2016) contained questionable results with improper analytic
approach and inadequate partitioning of the solution space, and provided
an improvement. However, we find that the improvement of Chiu et al.
(2017) is right but incomplete. Moreover, they used calculus method to
obtain their results. In Chang et al. (2005), the original restriction is to
derive the optimal solution by algebraic approach without referring to
calculus.

The purpose of this note is to present a further revision of Chiu et al.
(2017) with algebraic approach and answer the open question proposed
by Chang et al. (2005) as a corollary. A major contribution of this tech-
nical note is our proposed derivation method that will be useful for re-
searchers and practitioners to solve the minimum problems under
algebraic approaches. In Section 2, a brief review of merit achievements
associated with the inventory modeling for the past decade is presented.
It is followed by our proposed methodology in Section 3, and numerical
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applications in Section 4. Finally, a synthesis discussion in Section 5 will
conclude our technical note.

2. Brief review for inventory modeling achievements

To be compatible with C�ardenas-Barr�on (2001), Chang et al. (2005),
Lau et al. (2016) and Chiu et al. (2017), we use the same notation and
expressions as theirs. Readers for this note are suggested referring to
them for notation and assumptions.

The original inventory model solved by algebraic method was pro-
posed by C�ardenas-Barr�on (2001), and further revised by Ronald et al.
(2004) and Chang et al. (2005) as

CðQ;BÞ ¼ bþ h
2ρ Q

B2 � hBþ hρ
2
Qþ KD

Q
þ cD: (1)

Specifically, Chang et al. (2005) mentioned that an alternative way to
solve their minimum problem is to solve the following problem:

CðQðBÞ;BÞ ¼ cDþ h

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þ

�
b
h

��
B2 þ 2ρ

h
KD

s
� B

!
: (2)

By Equation (2), they provided the next open minimum problem:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ αÞB2 þ β

p
� B (3)

without using partial derivatives of calculus, where α ¼ b=h, β ¼
2ρKD=h, α > 0 and β > 0.

Recently, there are two papers: Lau et al. (2016) and Chiu et al.
(2017) to consider the following more generalized minimum problem:
. Chou).
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f ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ax2 þ bxþ c

p
� x (4)
with f ðxÞ > 0, for x > 0, to secure the minimum problem has an interior
optimal solution.

Lau et al. (2016) obtained two cases:

(a) a > 1, b � 0, c > 0 and 4ac > b2, and
(b) a > 1, b > 0, c > 0 and 4c > b2.

However, their solution contained questionable results, which will be
demonstrated by our Theorem 1 in Section 3, and several of their deri-
vations were derived by calculus.

Chiu et al. (2017) claimed two cases:

(a) a > 1, c > 0 and 4ac > b2, and
(b) a > 1 and 4c > b2.

They used the knowledge of calculus in derivations and their findings
are incomplete, which will be demonstrated by our Theorem 1 as well.
Hence, in this note, we will provide further improvements for Lau et al.
(2016) and Chiu et al. (2017) with algebraic method.

3. Proposed algebraic method

Our goal is to find conditions to guarantee that f ðxÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ax2 þ bx þ c

p � x for x > 0 with f ðxÞ > 0 has a unique minimum
(optimal) solution by algebraic methods. Before proving our theorem, we
would firstly explain the reason whywe concentrate on x > 0 with f ðxÞ >
0 herein.

When x→0þ and f ðxÞ→0, it implies that the inferior value occurs on
the boundary. Thus, the original inventory model has an inferior value
when Q→0þ, which is violating the common sense of the original mini-
mum cost inventory model. As a Remark, for the original minimum cost
inventory model, the average set up cost will go to infinite when the
replenishment cycle approaches to zero. Therefore, the original mini-
mum cost inventory model cannot have the finding as Q*→0þ. If the
optimal solution of f ðxÞ satisfies x*→∞, it implies that the optimal order
quantity as well as the holding cost will go to infinite. Thus, x*→∞ is not
an acceptable optimal solution for f ðxÞ. Under the condition of a point,
say bx, satisfying 0 < bx < ∞ and f ðbxÞ � 0, the corresponding inventory
model will have negative or zero holding cost and shortage cost that is a
contradiction for inventory models. Hence, we look for restrictions to
guarantee x > 0 and f ðxÞ > 0.

Remark. We want to rule out the case of a ¼ 1, c � 0 and b ¼ 2
ffiffiffi
c

p
to

result in the trivial case f ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 2

ffiffiffi
c

p
x þ c

p
� x � ffiffiffi

c
p

that has
infinite minimum solutions.

In this section, we will prove two necessary conditions of c > 0 and
a > 1, and rewrite Equation (4) to obtain additional three conditions:
4ac� b2 > 0, 4c > b2 when b � 0, and 4ða� 1Þc > b2 when b < 0 for
deriving our proposed Theorem 1.

First, we will prove that c > 0. Assuming c < 0, we select a point x1
with x1 > 0 and ax21 þ bx1 þ c < 0, which is a contradiction withffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ax21 þ bx1 þ c
q

.

Thus, we select x1 ¼ 1þjbj
1þjaj s with s ¼ min

(
1; jcjð1þjajÞ

2ð1þjbjÞ2

)
. As s � 1, we

compute

ax21 þ bx1 þ c < ð1þ jajÞx21 þ ð1þ jbjÞx1 � jcj ¼ ð1þ jbjÞ2
1þ jaj

�
s2 þ s

�� jcj

� 2s
ð1þ jbjÞ2
1þ jaj � jcj � 0

(5)
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to imply an unacceptable result f ðx1Þ < 0.
With an assumption of c ¼ 0, we construct a sequence ðtnÞ as tn ¼ 1

n2

and tn � ffiffiffiffi
tn

p
, and evaluate that

f ðtnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
at2n þ btn

p
� tn �

ffiffiffiffiffiffiffiffiffi
jajt2n

q
þ

ffiffiffiffiffiffiffiffiffi
jbjtn

p
þ tn � ð1þ jaj þ jbjÞ ffiffiffiffi

tn
p

¼ 1þ jaj þ jbj
n

(6)

to yield f ðtnÞ→0. As it will result in a solution of x*→0þ, we derive the
first condition of

c > 0: (7)

Second, we will prove that a > 1. When a < 1, we take x0 ¼ m
�

1þjbj
1�a

�
with m ¼ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
ð1�aÞjcj

p
1þjbj > 1 to imply that

ð1� aÞx20 � ð1þ jbjÞx0 ¼ ð1� aÞm2

�
1þ jbj
1� a

�2

� ð1þ jbjÞm
�
1þ jbj
1� a

�
¼ ð1þ jbjÞ2

1� a
mðm� 1Þ > ð1þ jbjÞ2

1� a
ðm� 1Þ2

>
ð1þ jbjÞ2
1� a

ð1� aÞjcj
ð1þ jbjÞ2 ¼ jcj � c: (8)

From ð1� aÞx2
0 > ð1þ jbjÞx0 þ c > bx0 þ c, it yields f ðx0Þ < 0 that is a

contradiction, and thus, a < 1 is not acceptable. The condition of a � 1 is
derived. We further show that when a ¼ 1, a minimum solution for 0 <

x < ∞ cannot be found. Note that the inferior value occurs on the
boundary x ¼ 0 or x ¼ ∞ are out of the domain 0 < x < ∞. When a ¼ 1,
three cases are elaborated separately herein: (a) b > 2

ffiffiffi
c

p
, (b) b < 2

ffiffiffi
c

p
and (c) b ¼ 2

ffiffiffi
c

p
.

For case (a), when a ¼ 1 and b > 2
ffiffiffi
c

p
, we derive that

4c < b2 ⇔ ax2 þ bxþ c > x2 þ 2
ffiffiffi
c

p
xþ c⇔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ax2 þ bxþ c

p
> xþ ffiffiffi

c
p

⇔ f ðxÞ
>

ffiffiffi
c

p
:

(9)

Thus, the inferior value occurs when x→0þ.
For case (b), a ¼ 1 and b < 2

ffiffiffi
c

p
, we show that f ðxÞ > b=2 for all x > 0

in

f ðxÞ > b=2⇔
bxþ cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ bxþ c
p þ x

>
b
2
⇔ bxþ c

>
b
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ bxþ c

p
þ b
2
x⇔

b
2
xþ c >

b
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ bxþ c

p
⇔ bcxþ c2

>
b2

4
ðbxþ cÞ⇔ cðbxþ cÞ > b2

4
ðbxþ cÞ⇔ ðbxþ cÞ

�
c� b2

4

�
> 0:

(10)

Next, we consider f ðxÞ when x→∞. Since f ðxÞ ¼ bþðc=xÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðb=xÞþðc=x2Þ

p
þ1
,

f ðxÞ→b
2 when x→∞. Thus, the inferior value happens when x→∞.

For case (c), if a ¼ 1 and b ¼ 2
ffiffiffi
c

p
, f ðxÞ is a constant function with

f ðxÞ � ffiffiffi
c

p
. Thus, every positive point is considered as the optimal solu-

tion, which violates our goal of finding a unique minimum solution.
Consequently, we derive the second condition

a > 1: (11)

We rewrite Equation (4) asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ax2 þ bxþ c

p
¼ xþ f ðxÞ (12)

and take square on both sides. We arrange the expression in the
descending order of x and treat f ðxÞ as a constant term for the moment.
Through the square for x, it implies
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4ða� 1Þ2
�
x� 2f ðxÞ � b

2ða� 1Þ
�2

þ 4cða� 1Þ � b2 þ 4bf ðxÞ ¼ 4a f 2ðxÞ: (13)
We complete the square for f ðxÞ to yield that

4ða� 1Þ2
�
x� 2f ðxÞ � b

2ða� 1Þ
�2

þ
�
a� 1
a

��
4ac� b2

� ¼ 4a
�
f ðxÞ � b

2a

�2

:

(14)

Based on Equation (14), owing to the coefficients of two square terms,
4ða� 1Þ2 and 4a are both positive, we find a condition to obtain a pos-
itive minimum value as

4ac� b2 > 0: (15)

We derive the relation between the optimal point, x* and the optimal
value f ðx*Þ as

x* ¼ 2f ðx*Þ � b
2ða� 1Þ : (16)

With the restriction of the domain for x* > 0, we derive that

f
�
x*
�
> b=2: (17)

Therefore, we recall Equation (14) with its relation to Equations (16)
and (17), and find that

f
�
x*
�� b

2a
¼ �1

2a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� 1Þð4ac� b2Þ

p
(18)

is not an acceptable value. Hence, we find that

f
�
x*
�� b

2a
¼ 1

2a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� 1Þð4ac� b2Þ

p
: (19)

Consequently, referred to Equations (16) and (19), we obtain

x* ¼ 1
2a

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ac� b2

a� 1

r
� b

!
: (20)

Based on Conditions of Equations (11) and (15), we know thatffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið4ac� b2Þ=ða� 1Þp
is well defined. For the well defined solution x*, we

need to ensure that x* > 0. Thus, we derive the following condition.

Lemma 1. x* ¼ 1
2a

 ffiffiffiffiffiffiffiffiffiffiffi
4ac�b2
a�1

q
� b

!
is well defined if and only if (a) b < 0,

or (b) b � 0 with 4c > b2.

Proof. We need to check x* > 0.When b � 0, we want 4ac�b2
a�1 > b2 that is

4c > b2, owing to a > 1. When b < 0, no extra requirement is needed.

We examine the derivations of Chiu et al. (2017) to know that they
did not evaluate f ðx*Þ. Hence, we first find that

a
�
x*
�2 þ bx* þ c ¼ 4ac� b2

4ða� 1Þ : (21)

And then we compute

f
�
x*
� ¼ bþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið4ac� b2Þða� 1Þp

2a
: (22)

To derive a reasonable positive minimum value, we have to check the
minimum value of Equation (22), which is positive. Two cases are
elaborated herein: b � 0 and b < 0. When b � 0, we know that f ðx*Þ > 0
without any additional requirement under the restriction of our Lemma 1
where a > 1 and 4c > b2.

When b < 0, we have to ensure the positivity of Equation (22) and
then we simplify ð4ac� b2Þða� 1Þ > b2 as

4ða� 1Þc > b2: (23)
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We combine our results in the next theorem.

Theorem 1. For the existence and uniqueness of an interior minimum, we
obtain the necessary conditions as a > 1 and c > 0.

(i) When b � 0, we find that 4c > b2, and
(ii) When b < 0, we derive that 4ða� 1Þc > b2,

with the minimum point, x* of Equation (20) and minimum value, f ðx*Þ of
Equation (22).

Proof. When b � 0, the condition of 4ac > b2 is unnecessary. Because
we already have a > 1 and 4c > b2 to imply that 4ac > 4c > b2. When
b < 0, the condition of 4ac > b2 is already contained in the inequality of
4ða� 1Þc > b2 since 4ac > 4ða� 1Þc.

Next, we come back to the open question proposed by Chang et al.
(2005). We assume that a ¼ 1þ α, with α > 0, b ¼ 0 and c ¼ β > 0, to
know that the conditions a > 1, 4c� b2 ¼ 4β > 0 and 4ða� 1Þc� b2 ¼
4αβ > 0 are all satisfied. We finally derive

f
�
x*
� ¼ ffiffiffiffiffiffiffiffiffiffiffi

αβ
1þ α

r
(24)

and

x* ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β

αð1þ αÞ

s
: (25)

It concludes that our proposed method without referring to calculus
can derive the same results as predicted by Chang et al. (2005).

4. Numerical examples and an application of our derivation

In this section, we will provide four examples, the first two examples
illustrate that the conditions of Lau et al. (2016) and Chiu et al. (2017)
are questionable. The third example is used to demonstrate our findings
for b � 0 while the fourth example is set for b < 0.

For the first numerical example, we assume a ¼ 2, b ¼ 2 and c ¼ 1 so
that the conditions of a > 1 and 4ac > b2 proposed by Lau et al. (2016)
and Chiu et al. (2017) are satisfied. However, we find that minimum of
f ðxÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2x2 þ 2x þ 1
p � x is with inferior value f ð0Þ ¼ 1. Because for

x > 0,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2x2 þ 2x þ 1

p
> x þ 1 if and only if x2 > 0 , there is no interior

minimum point. Hence, we demonstrate that the criterion proposed by
Lau et al. (2016) and Chiu et al. (2017) contained questionable results.

Next, for the second numerical example, we assume a ¼ 2, b ¼ �4
and c ¼ 3 so that the conditions of a > 1 and 4ac > b2 proposed by Lau
et al. (2016) and Chiu et al. (2017) are satisfied. However, we find the
minimum of f ðxÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2x2 � 4x þ 3
p � x is at the minimum point x* ¼ 1þ

ð ffiffiffi
2

p
=2Þ and minimum value f ðx*Þ ¼ � 1� ð ffiffiffi

2
p

=2Þ. It is against the
purpose of extension by Lau et al. (2016) and Chiu et al. (2017) for
deriving an interior minimum point with positive minimum value.
Although the minimum point x* ¼ 1þ ð ffiffiffi

2
p

=2Þ is acceptable, the mini-
mum value f ðx*Þ ¼ �1� ð ffiffiffi

2
p

=2Þ is out of the scope of their original
purpose.

For the third numerical example, we assume a ¼ 2, b ¼ 2 and c ¼ 2 so
that our proposed criteria of a > 1, c > 0, b � 0 and 4c > b2 in Theorem 1
Part (i) are satisfied. We find x* ¼ ð ffiffiffi

3
p � 1Þ=2 by Equation (20), and

obtain f ðx*Þ ¼ ð ffiffiffi
3

p þ 1Þ=2 through Equation (22).
For the fourth numerical example, we assume a ¼ 2, b ¼ �4 and c ¼

5 so that our proposed criteria of a > 1, c > 0, b < 0 and 4ða� 1Þc > b2

in Theorem 1 Part (ii) are satisfied. We find x* ¼ ð ffiffiffi
6

p þ 2Þ=2 by Equation
(20), and obtain f ðx*Þ ¼ ð ffiffiffi

6
p � 2Þ=2 through Equation (22).

We recall the inventory model of C�ardenas-Barr�on (2010) and Tuan
and Himalaya (2016),
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TCðQ;BÞ ¼ Ad
Q

þ hðQ� BÞ2
2Q

þ vB2

2Q
(26)
and compare the expression of Equation (26) with Equation (1). We find
that if we assume ρ ¼ 1, b ¼ v, C ¼ 0, D ¼ d and K ¼ A, we can convert
the inventory model proposed by C�ardenas-Barr�on (2001) to that of
C�ardenas-Barr�on (2010) and Tuan and Himalaya (2016). Hence, our
derivation can be applied to C�ardenas-Barr�on (2010) and Tuan and
Himalaya (2016) to provide an alternative approach for solving in-
ventory models by algebraic methods.

5. Conclusion

In this note, we solved the generalized open question proposed by Lau
et al. (2016) also point out the error questionable results of Lau et al.
(2016) and Chiu et al. (2017). Consequently, the original open question
of Chang et al. (2005) becomes a special case from our solution. Our
derivation of Equation (20) for the optimal solution of x* by algebraic
method is the same result as predicted by Chang et al. (2005) by different
algebraic method and that of Chiu et al. (2017) by analytical approach.
Hence, we provide a reply for the open question proposed by Chang et al.
(2005) and a generalized open question proposed by Lau et al. (2016).
Moreover, we revise criteria discussed by Lau et al. (2016) and Chiu et al.
(2017) to guarantee the existence and uniqueness of the interior optimal
solution.
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